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Abstract
We derive expressions for the shear modulus of deeply quenched, glassy solids, in terms of a
Cauchy–Born free energy expansion around a rigid (quenched) reference state, following the
approach due to Alexander (1998 Phys. Rep. 296 65). Continuum-limit explicit expressions of
the shear modulus are derived starting from the microscopic Hamiltonians of central and
bond-bending interactions. The applicability of the expressions to dense covalent glasses as
well as colloidal glasses involving strongly attractive or adhesive bonds is discussed.

1. Introduction

While the structure, elasticity and lattice dynamics of
condensed matter with long-range order (thanks to the
intrinsic symmetry of crystalline structures) are fairly well
understood [1], the same cannot be said of amorphous solids.
Recent advances include the unveiling of connections between
disordered solids made of thermal particles (glasses) and
granular packings, so that the puzzling properties found
in both these classes of materials can be investigated by
means of unifying concepts. Well-known examples are the
excess of low-frequency modes (the so-called boson peak
in the vibrational spectrum) [2] and the inhomogeneity of
the elastic response [2–4]: features that have been observed
in atomic (and molecular) glasses as well as in granular
systems. These phenomena, as recent theoretical studies have
proposed, may find their origin in the weak connectivity of
amorphous solids [5] as well as in their lack of symmetry [4, 6].
Regarding the former aspect, recently it became clear that
coordination plays a fundamental role in determining the
mechanical properties of marginally rigid solids when only
central forces are at play. On the other hand, in the case of
strongly connected structures or other dense systems where the
bonds between building blocks can support bending moments,
nonaffinity is often a very small correction to the affine part;
thus the affine approximation works relatively well [7, 8].
Some technologically important systems seem to belong to this
class, e.g. dense networks of semi-flexible polymers, strong

attractive colloidal glasses and covalent glasses (e.g. silicon
glass) [7, 9].

In the present work, we derive explicit expressions for the
macroscopic shear modulus of deeply quenched, arrested states
of like particles, using Alexander’s Cauchy–Born approach.
The validity and application of the results are discussed.

2. Continuum theory of shear elasticity in solids with
quenched disorder

In [6], Alexander formulated the systematic Cauchy–Born
approach for amorphous solids, based on which the Helmholtz
free energy at T = 0 (thus coinciding with the internal
energy) can be expanded around a rigid, stressed, reference
configuration where the set of particle positions is denoted
by {R}. In such a low-temperature reference state, as a
result of quenching (solidification), particles are labelled, in
the sense that they occupy well-defined and fixed positions
on a (disordered) lattice, the set of which represents just one
out of N ! possible permutations (N being the total number
of particles). In other words, permutation symmetry (which
is active in the liquid precursor) is broken in the quenching
process [6]. Because of this, as opposed to equilibrium
fluids, the disorder average for amorphous solids is of non-
trivial definition. To avoid this problem, in Alexander’s
version of Cauchy–Born theory, the expansion (along with
the disorder average) is carried out in terms of the relative
deviations between particles. As shown in [6], this leads
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to the continuum limit and provides the only systematic
application of Cauchy–Born theory to disordered solids. In
the following we apply this approach to a generic dynamically
arrested (glassy) state composed of spherical particles mutually
interacting via two-body central and three-body angular (bond-
bending) interactions. This may be a suitable model of well-
bonded glassy systems such as atomic (covalent or metallic)
glasses or attractive colloidal glasses.

Retaining terms up to second order, and including a three-
body angular interaction term, the expansion is

δF ≡ F({r}) − F({R}) �
∑

〈i j〉

∂ F

∂ri j

∣∣∣∣
{R}

δri j

+ 1

2

∑

〈i j〉

∂2 F

∂r 2
i j

∣∣∣∣∣{R}
(δri j)

2 + 1

2

∑

〈i jk〉

∂2 F

∂�2
i jk

∣∣∣∣∣{R}
(δ�i jk)

2.

(2.1)

In the first two terms on the rhs, the summation runs over all
Nc pairs of pair-interacting particles (i.e. over all bonds) and
the derivatives are evaluated at the equilibrium distance in the
reference rigid state Ri j ≡ |Ri j |. In the last term (i.e. the
angular interaction or bond-bending term) the summation is
over pairs of bonds [i j ] and [ik], i �= j �= k, having one
common vertex. In our analysis, we will consider the two-
body (central) terms and the three-body (bond-bending) terms
in equation (2.1) separately, starting from the former case.

Expanding in the relative distance deviations allows one
to define a microscopic displacement field ui j :

δri j = u‖
i j + [(u⊥

i j)
2/2Ri j ] + O(r 3

i j ) (2.2)

which has a component in the direction of Ri j , i.e. u‖
i j ≡

(δRi − δR j) · R̂i j , and an orthogonal component, i.e. u⊥
i j ≡

(δRi − δR j)
⊥. In the absence of external forces,

substituting equation (2.2) into the central interaction terms in
equation (2.1), gives

δF (C) �
∑

〈i j〉

∂ F

∂ri j

∣∣∣∣
{R}

[(δRi − δR j)
⊥]2

2Ri j

+ 1

2

∑

〈i j〉

∂2 F

∂r 2
i j

∣∣∣∣∣{R}
[(δRi − δR j) · R̂i j ]2. (2.3)

The first-derivative terms correspond to the bond-tension or
stress terms associated with the initial or quenched stresses
(which are, generally, dependent upon the ageing history).
These make an important contribution to the rigidity of weakly
connected (undercoordinated) materials and actually ensure
the existence of a rigid reference state around which one can
expand [6]. For central interactions, the second derivative
can be written as the bond stiffness κ‖ ≡ ∂2 F/∂r 2

i j |{R}, also
known as the Born–Huang term. In the case of a glass,
these terms are to be evaluated in the stressed state and, in
general, may differ from the corresponding terms in crystals
at true (thermodynamic) equilibrium (which are evaluated
exactly at the position of the minimum of the pair potential).
Since, however, the interparticle distances in the stressed state
are generally not a priori known, a useful and widely used
approximation is to evaluate the second derivative of the pair

potential at the distance corresponding to the minimum of the
potential well, just as for crystals. Though this approximation
is usually not justified for amorphous solids, in the case of
deep, short-ranged attractive potential wells, the probability of
finding the particle is by far the highest near the minimum
of the well. As a consequence, the latter is expected to be
a good estimate of the average interparticle distance in these
systems also in the stressed state, as shown in [11]. Further,
since ‘initial stresses in glasses must be internal stresses with a
zero average’ so that ‘the internal stresses cannot contribute
to the overall macroscopic shear rigidity’, it follows that
‘the macroscopic elastic moduli which one measures must
be proper Born–Huang shear moduli’ [6], as confirmed also
within simulation studies [10]. Therefore, the stress terms
in the expansion, equation (2.3), can be neglected to a good
approximation [6, 10], and one can write

δF (C) � 1
2κ‖

∑

〈i j〉
[(δRi − δR j) · R̂i j ]2 = 1

2κ‖
∑

〈i j〉
(u‖

i j)
2

(2.4)
where · denotes the average over all possible deviations
(i.e. strain configurations) from the reference state. Introducing
a smooth (continuous) displacement field u(r), to lowest order
in the gradient expansion one has

u‖
i j � (Ri j ·∇)u(r) · R̂i j = R−1

i j Rα
i j Rβ

i j∂αuβ, (2.5)

where summation over repeated indices is understood and
transposition symmetry is evident. Using this and introducing

the affine transformation (u‖
i j)

2 � Tr[(Ri j ⊗ Ri j ) · e/Ri j ]2

defined by the disorder-averaged linearized symmetric strain

tensor e ≡ eαβ = 1
2 (∂αuβ + ∂βuα), with u‖

i j − u‖
i j

2

� u‖
i j

2
, we

obtain the continuum limit [6]:

δF (C) � 1

2

∑

〈i j〉
κ‖(u‖

i j)
2 � 1

2

∑

〈i j〉
κ‖

{
Tr[(Ri j ⊗ Ri j) · e]

Ri j

}2

(2.6)
where ⊗ denotes the dyadic product. It is easy to find that
for an imposed pure shear deformation the above expression
reduces to

δF (C) � 1

2
κ‖

∑

〈i j〉
4R2

i j

(
Rx

i j

Ri j

Ry
i j

Ri j

)2

e2
xy . (2.7)

For the quenched configuration {R}, under the assumption that
pair (two-body) interactions are much stronger than higher-
order multi-body interactions, the summation over pairs of
nearest neighbours can be replaced by the total number of
bonds, Nc . This implies an average over all possible spatial
orientations of the bonds in the reference state {R}:
δF (C) � 1

2κ‖ Nc〈4R2
i j (R̂x

i j R̂ y
i j )

2e2
xy〉�

� 2κ‖ Nc R2
0〈(R̂x

i j R̂ y
i j)

2〉�e2
xy (2.8)

where Ri j ≡ R0 is the average interparticle distance in the
reference quenched configuration and 〈·〉� denotes the angular
average. Introducing the mean coordination z, and noting that
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Nc/V ≡ 1
2 z N/V ≡ 3zφ/π Rd

0 , leads to the following form
for the free energy density:

δ F̃ (C) � 6π−1κ‖zφR2−d
0 〈(R̂x

i j R̂ y
i j )

2〉�e2
xy . (2.9)

where d is the dimensionality of space. For d = 3, using
spherical coordinates R̂i j = (sin θ cos ϕ, sin θ sin ϕ, 1), with
Rx

i j = sin θ cos ϕ, Ry
i j = sin θ sin ϕ and assuming that the

particles have zero degree of spatial correlation, averaging
gives

〈(R̂x
i j R̂ y

i j )
2〉� = 1

4π

∫ ∫
dϕ sin θ dθ(sin4 θ cos2 ϕ sin2 ϕ)

= 1

15
. (2.10)

At T = 0, σαβ ≡ ∂δF/∂eαβ and the affine translation–
rotation invariant shear modulus for the central-force case can
be derived as

G(C) � 4

5π
κ‖zφR−1

0 . (2.11)

Note that this expression has been derived using the definition
of linearized strain tensor. In experiments and simulations
the engineering strain tensor defined as γxy ≡ 2exy is often
used. This leads to a prefactor 2/5π in equation (2.11) instead
of 4/5π whenever equation (2.11) is to be compared with
experimental measurements of G where the stress is measured
as a function of the engineering strain (e.g. in [11]).

The coordination number z can be estimated from the
experimentally determined structure factor, or evaluated, for
sufficiently dense glasses, according to the following route. If
the glass is dense (φ > 0.5) its structure is homogeneous due to
mutual impenetrability of the particles and therefore dominated
by the hard-sphere component of interaction. As shown by
recent experimental studies [12], the result is that dense (φ ∼
0.6) strongly attractive glasses exhibit the same homogeneous
structure of purely hard-sphere glasses. Therefore, it is
possible to estimate the mean coordination as a function of the
packing fraction φ, by calculating the mean coordination of
the hyper-quenched hard-sphere liquid with the same φ. This
is equivalent to integrating the radial distribution function of
hard-sphere liquids with a cutoff on the integration determined
so as to recover the jamming point of monodisperse hard
spheres (given as z = 6 at φ � 0.64). This route has been used
to interpret experimental data of attractive colloidal glasses
in [11].

Equation (2.11) has been obtained under the limiting
assumption that, in very attractive systems, the affine
approximation leads to a small error. However, in spite of that
approximation, in [11] it has been shown that equation (2.11)
gives a rather accurate quantitative description of the shear
modulus of short-ranged attractive (depletion) colloidal glasses
such as those studied in [13]. In that case, the affine
approximation is justified because the elastic response is
dominated by the first linear regime ending with the break up
of nearest-neighbour bonds [13].

The more general expansion in equation (2.1) involves
the three-body bond-bending forces and is somewhat more

complex. A suitable model, which satisfies translation–rotation
invariance, is the three-body Hamiltonian [14]:

δF (B) = 1
2κ⊥

∑

〈i jk〉
(δ�i jk)

2 = 1
2κ⊥

∑

〈i jk〉
|(ui j × R̂i j

− uik × R̂ik) · (R̂i j × R̂ik)/|R̂i j × R̂ik ||2 (2.12)

where κ⊥ is the local BB stiffness: κ⊥ ≡ ∂2 F/∂�2
i jk |{R}.

Again, following the Cauchy–Born approach of [6] and
averaging over all possible strained configurations one can
write

|R̂i j × R̂ik |δ�i jk = (ui j × R̂i j − uik × R̂ik) · (R̂i j × R̂ik),

(2.13)
which, in component notation and after expanding in the
displacement field, is

|R̂i j × R̂ik |δ�i jk � (R−1
i j Rα

i j∂αεβδγ uδ Rγ

i j − R−1
ik Rχ

ik∂χ

× εβηλuη Rλ
ik)εβμν Rμ

i j Rν
i j . (2.14)

As shown in the appendix, one has that

(ui j × R̂i j) · (R̂i j × R̂ik) � 2[(RT
i j · e) × R̂i j ] · (R̂i j × R̂ik).

(2.15)
Thus, the disorder-averaged change in the interaction angle can
be written as

δ�i jk � 2[(RT
i j · e) × R̂i j − (RT

ik · e) × R̂ik] · (R̂i j

× R̂ik)/|(R̂i j × R̂ik)| (2.16)

which, by making use of Lagrange’s identity and rearranging
terms, becomes

δ�i jk � 2(sin �i jk)
−1{[(RT

i j · e) · R̂i j + (RT
ik · e) · R̂ik]

× cos �i jk − [(RT
i j · e) · R̂ik + (RT

ik · e) · R̂i j ]} (2.17)

and, finally,

δ�i jk � 2(R0 sin �i jk)
−1{cos �i jk[Tr(Ri j ⊗ Ri j)

+ Tr(Rik ⊗ Rik)] · e − [Tr(Rik ⊗ Ri j )

+ Tr(Ri j ⊗ Rik)] · e}. (2.18)

For a pure shear, the above expression reduces to

δ�i jk � 4(R0 sin �i jk)
−1{[(Rx

i j Ry
i j + Rx

ik Ry
ik) cos �i jk]

− [Ry
i j Rx

ik + Rx
i j Ry

ik]}exy . (2.19)

We now take the isotropic average over �i jk , thus assuming
a flat distribution for �i jk: this assumption may be
realistic for systems with strong spatial disorder such as,
for example, emulsion glasses, colloidal or atomic (metallic
and semiconductor) glasses without directional interactions.
For molecular network glasses, however, �i jk will rather be
distributed according to the chemistry of the system. With
covalent network glasses, usually the number of angles �i jk

is finite and dictated by the valence, thus giving rise to distinct
terms in the expansion. Application of this model to specific
covalent glasses may be the object of future work. Here we
limit our analysis to the case of strong disorder, so that an
unbiased average yields

〈δ�i jk〉� � 〈4(R0 sin �i jk)
−1{[(Rx

i j Ry
i j + Rx

ik Ry
ik) cos �i jk]

− [Ry
i j Rx

ik + Rx
i j Ry

ik]}〉�exy � 4
3 R0 sin ϕ cos ϕ

× (− sin2 θ + cos2 θ − 4 sin θ cos θ)exy (2.20)
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where Rx
ik = sin(θ + �) cos ϕ and Ry

ik = sin(θ + �) sin ϕ

have been used. As before, we assume random orientation of
the bonds in the reference state {R} so that, on average, each
term in the summation in equation (2.12) contributes

〈〈δ�i jk〉2
�〉� � 16

9
R2

0

[
1

4π

∫ ∫
dϕ sin θ dθ(sin ϕ cos ϕ)2

× (sin4 θ + cos4 θ + 14 sin2 θ cos2 θ

+ 8 sin3 θ cos θ − 8 sin θ cos3 θ)

]
exy . (2.21)

Therefore, using δ�i jk − δ� jk

2 � δ�i jk
2

for the average over
disorder, as well as 〈δ�i jk − 〈δ�i jk〉�〉2

� � 〈δ�i jk〉2
� for the

spatial average over the bending angle, linear elasticity leads to

G(B) � 124

135π
κ⊥z(B)φR−1

0 (2.22)

where the sum over three-body interactions has been replaced
by 1

3 z N/V ≡ 2zφ/π R3
0 .

In equations (2.11) and (2.22) the definition of the
microscopic bond rigidities (κ‖ and κ⊥, respectively) is clearly
different and the numerical prefactor is also different. In the
BB case, the value of the prefactor is especially important,
because for (real) network glasses it also contains information
about the chemistry-dependent geometry of the network. Here,
the prefactor (124/135)π−1 has been found for the case of
nondirectional bonds and strong disorder but, in the case of
real covalent glasses, it depends on the values of the bond-
bending angle �i jk . For a generic system where both CF
and BB interactions are present, as in many real glasses, the
shear modulus can be estimated from the stress–strain relation
σαβ ≡ ∂δF/∂eαβ , where according to Cauchy–Born theory
δF � δF (C) + δF (B), as

G = G(C) + G(B) �
(

4

5π
κ‖z(C) + 124

135π
κ⊥z(B)

)
φR−1

0

(2.23)
G(C) and G(B) represent, respectively, the values to which
the shear modulus would reduce in the case where
respectively purely central interactions and purely bond-
bending interactions have to be considered in the free energy.

Equation (2.23) accounts for the fact that the mean number
of bonds per particle which display BB resistance may differ
from that of purely CF bonds. Indeed, for real covalent glasses,
z(B) is a function of the valence which, in turn, is determined
by the specific chemistry of the glass under consideration.

3. Discussion and potential applications

Equation (2.23) has been derived by systematically applying
Cauchy–Born theory (with the expansion written in terms
of the relative deviations) and gives the macroscopic elastic
response to the shear of amorphous solids with both central-
force and bond-bending interactions as a function of coarse-
grained parameters. These are the mean coordination (z), the
volume fraction (φ), the interparticle interactions (embedded
in the Born–Huang term κ) and the mean separation distance
(R0) between nearest neighbours in the reference (stressed)

configuration. The latter, in a solid, is approximately equal
to the diameter of the building blocks. We would like to
clarify, at this point, the differences of the approach outlined
in this work as compared to the various models in the
literature, especially within rheological models. In most of
these cases, the heterogeneous and heuristic character of the
assumptions leads to numerical prefactors inconsistent with
each other and generally not quantitatively comparable with
the experiments [15]. Moreover, the affine approximation
is sometimes applied to weakly bonded materials where
nonaffine rearrangements are important instead. Including
bond-bending terms in the expansion as done here is crucial,
thus making possible the application of continuum theory
to such materials as strong covalent glasses (Si, Ge) where
nonaffine rearrangements are smaller [9].

Furthermore, equation (2.23) tells us that the shear
modulus of glasses is sensitive to an increase in the average
number of covalent bonds (i.e. bonds which can react to shear
forces) per atom. Increasing the average number of covalent
bonds per atom has two main consequences on the properties
of a glass: the stabilization of soft (localized) transverse
vibrations and the shift of the Ioffe–Regel crossover to higher
frequencies. Hence, both these effects are expected to translate
into a decrease of the well-documented excess of modes in the
vibrational density of states of glasses, i.e. a decrease in the
intensity of the so-called boson peak [16]. Experimentally,
a situation where the average number of covalent bonds per
atom can be varied (within the range 2 � z(B) � 4) is
found in chalcogenide alloys Gex Se1−x , where x represents
the relative concentration of Ge by varying which the average
number of covalent bonds per atom can be varied [17]. It
was indeed found experimentally that the boson peak intensity
decreases upon increasing x , thus D(ωBP)/ωBP ∝ 1/xβ , where
β is an exponent of order 1 [18]. According to our result,
equation (2.23), G ∝ x . Assuming that this holds even when
nonaffinity is important, it follows that D(ωBP)/ωBP ∝ 1/Gβ .
The latter relation with β = 1 has been proposed on the basis
of simulations of 2D spin glasses in recent work [19].

3.1. Aggregated colloidal systems

We should note that equation (2.23) may also find application
in better understanding the structure–elasticity properties of
(dense) aggregated colloidal systems. In fact, it has been
recently shown that polymer latex particles in the micron
range display BB rigidity as a consequence of contact
adhesion [20, 21]. Therefore, for such colloidal systems,
the BB stiffness in equation (2.22) may be expressed as
a function of the surface adhesion parameters according to
the experimental findings of [20] where the relation κ⊥ �
6πa4

c E0/R3
0 was proposed (ac is the radius of the contact

area of adhesion between two particles and E0 is the particle
Young’s modulus). This is motivated by recognizing that
the microscopic elastic constant for shear rigidity, κ⊥, is
defined here as the energy cost for changing the angle between
two bonds with a vertex in common, in the same way as
in previous studies on colloidal gels and aggregates, see,
for example, [20] and [22]. It is therefore consistent, also

4
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from a dimensional point of view, with the single-bond BB
rigidity measured in [20]. In particular equation (2.23) tells
us that the presence of bond-bending forces gives an important
contribution to the global shear rigidity. In the case of a
colloidal aggregated state with z(B) = z(C) = 3 for example,
the system is largely overconstrained (since the number of
saturated degrees of freedom is z(C)/2 + z(B)(z(B) − 1)/2 =
9) and nonaffine displacements are small. Thus, our model
is expected to be particularly accurate. Situations where
z(B) = z(C) ≈ 3 or larger are commonly encountered in
not too diluted aggregated or gelled colloidal dispersions (see,
e.g., [23–25]). Thus, combining the results of the present work
with those of [20] for the microscopic description of bond-
bending rigidity, may help in future work to lay down the
groundwork for a comprehensive quantitative modelling of the
elastic properties of aggregated colloidal systems in the semi-
dilute to concentrated regime.

4. Conclusions

The systematic Cauchy–Born approach to amorphous solids,
in the same spirit of [6], has been applied to evaluate the
macroscopic response to shear of low-T glassy states of
spherical particles interacting via a central pair interaction
potential supplemented with an angular (bond-bending) three-
body interaction term. Expressions in closed form are derived
by making use of the affine approximation. The latter is
generally a strong assumption when dealing with disordered
systems, but may lead to small errors if the interparticle
bonds can support significant bending moments (thus greatly
reducing the number of degrees of freedom), as in covalent
glasses (e.g. amorphous Si and Ge) [9]. Further, the model has
the potentiality to account for the specific chemistry-dependent
structure of real glasses. In the case of purely central
pair interaction potentials, the situation is more complex
because nonaffine relaxations are usually important. The affine
approximation, therefore, is of limited application. However,
also in the latter case, as shown elsewhere [11], the formulae
derived here can nevertheless yield accurate predictions for
colloidal glasses in the limit of strong short-ranged interparticle
attraction. In this limit, the observed linear elastic regime
is indeed due to stretching of the bonds [13, 26], so that,
the particles being localized upon strain within the short
range of attraction, the assumptions used here yield reasonable
predictions.
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Appendix. Derivation of equation (2.15)

One can decompose the gradient expansion of the smooth
displacement field u(r) into an explicitly symmetric part

(i.e. the disorder-averaged symmetric strain tensor) and an
antisymmetric one as

ui j ≡ ui − u j � (Ri j · ∇)u = [RT
i j · e + 1

2 (∇ × u) × Ri j ].
(A.1)

Using the well-known identities

(∇ ×u)×Ri j = −Ri j × (∇ ×u) = −∇(Ri j ·u)+ (Ri j ·∇)u.

(A.2)
Equation (A.1) can be rewritten as

ui j � (Ri j ·∇)u = [RT
i j · e − 1

2∇(Ri j · u) + 1
2 (Ri j · ∇)u].

(A.3)
Rearranging terms:

ui j � (Ri j ·∇)u = 2[RT
i j · e − 1

2∇(Ri j · u)]. (A.4)

Hence, we can rewrite equation (2.16) as

(ui j × R̂i j) · (R̂i j × R̂ik) � 2{[(RT
i j · e) × R̂i j ]

− 1
2 [∇(Ri j · u) × R̂i j ]} · (R̂i j × R̂ik). (A.5)

For the antisymmetric parts, we can use the identity ∇(Ri j ·
u) × R̂i j = ∇ × (Ri j · u)R̂i j − (Ri j · u)∇ × R̂i j , where the
second term on the rhs is clearly zero. Therefore, the term
[∇ × (Ri j · u)R̂i j ] · (R̂i j × R̂ik), making use of Lagrange’s
identity, is seen to be zero:

[∇ × (Ri j · u)R̂i j ] · (R̂i j × R̂ik)

= (∇ · R̂i j)[(Ri j · u)R̂i j · R̂ik]
− (∇ · R̂ik)[(Ri j · u)R̂i j · R̂i j ] = 0 (A.6)

because R̂i j and R̂ik are constant vectors. Hence,
equation (2.15) is verified.
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